
Incorporating Development for Mobile Devices
When Teaching Software Engineering

Ani Nahapetian
Computer Science Department

California State University, Northridge (CSUN)
ani@csun.edu

Abstract

This work presents a case study of incorporating projects
on software and middleware development for mobile
devices, into existing software engineering courses of a
Computer Science curriculum. As a predominant technology
among our student bodies (with smart phones and tablets),
along with the growing market for Android or iPhone
developers, students are yearning for opportunities to
develop apps and interface with mobile devices. Here, we
incorporate knowledge and practical experience with mobile
systems (including app development, interfacing with
research systems and off-the-shelf embedded devices) with
existing software engineering courses.

Keywords: Software Engineering; Mobile Systems; Body
Area Networks

I. INTRODUCTION

In our case study, an existing undergraduate level
software engineering course has been modified by integrating
cutting-edge mobile system development with the
fundamentals of software engineering. In the course, students
work in teams to produce large software projects that address
real-world problems and needs, while carrying out
development for various mobile systems and devices. The
application of software engineering practices presented in
lecture, such as software versioning and unit testing, to the
mobile systems course projects highlights the relevance and
applicability of the software engineering practices, while also
providing an opportunity for students to increase their
experience working with mobile devices.

Mobile system development courses for undergraduate
students are fairly limited, especially when compared to the
availability of introduction to software engineering courses.
Instead of proposing and developing a new course (although
it has successfully been carried out), we infused mobile
development into an existing required Computer Science
course. The aim of this effort was to expose students to a
popular industry field, without imposing any additional
graduation requirements.

Throughout the course, students engaged in discovery
learning, by asking questions to understand functional and
domain requirements, by refining ideas during the drawing of
straw man and formal designs, and by formalizing concepts
during software creation and testing. The process of
discovering and determining information through hands-on

work such a prototype development, as well as from posing
technical questions in the requirements engineering process,
has the potential to clarify ideas and motivate student learning
in the area of mobile computing. The advantages of using
discovery learning in Computer Science curricula have been
published widely [5][1][4][6], along with the significance of
team-based project work in undergraduate software
engineering courses [2][3][7].

II. COURSE OVERVIEW

Mobile computing topic infusion presented in this paper
was carried out California State University, Northridge
(CSUN)’ Comp 380/L: Software Engineering undergraduate
course. This course has both a lecture and a lab component,
with software engineering fundamentals and best practices
presented during the 50-minute lecture and the 75-minute lab
time providing students with an opportunity to work and
collaborate on project tasks under the guidance of the course
instructor. The semester-long course involves several small
teams of students (~4-5 students/team) each developing code,
documentation, and configuration information for a large
software project.

As a required part of the undergraduate Computer Science
degree program, COMP 380 experiences a large enrollment
of undergraduate Computer Science majors, typically in their
junior year of college. Additionally, the course fulfills
requirements for the Computer Engineering, Computer
Information Technology, and Information Systems majors,
and thus enrollment by students from these majors is also
common.

Throughout the software project development, students
work on various builds to complete their projects. Although
each team project varies, various compulsory components are
involved in the project work. Students work towards
successive builds. By the end of the semester, the students
have practiced and learned various important skills in
software development for mobile devices. Additionally, they
have still worked towards an understanding of software
engineering principles.

Figure 1 provides the overview of the course activities
through the semester. Throughout the course, students
interface with a ‘customer,’ an invited stakeholder with an
interest in the project’s product. Additionally, they interact
with the instructor formally with lecture and informally with
the lab component of the class.

978-1-4673-5112-6/13/$31.00 ©2013 IEEE 49 Interdisciplinary Engineering Design Education Conference

Final
presentation

Students Project
proposal and

team
formation

Software
design

Implementation and
testing

Customer Background
presentation

Requirements
engineering

Acceptance
testing

Course
Instructor

Presentation of software engineering topics; overseeing project progress; acting as liaison
between students and customer

Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Figure 1. Course activities during 15-week semester, for all project participants.

III. CASE STUDY EVIDENCE

The successfully created student projects provide evidence
of the successful infusion of mobile computing topics in the
lab component of the software engineering course. Select
projects are highlighted in this section, including the CSUN
Parking App (CPA) and WeMet.

All of the projects were implemented using the Anrdoid
platform. Students in the program were exposed to Java
programming, thus making it easier to work with Android
API than the objective-C based iPhone platform.

The CSUN Parking App (CPA) project, developed in
Spring 2012, involved the development of a participatory
sensing based system for directing drivers to open campus
parking lots. Figure 2 provides high-level use-case diagram
for the system.

Figure 2. High-level use-case diagram for student CPS

parking app project.

The project involved collecting data from an interactive

form and map developed by the students. The data was sent to
a remote server, which used a Model-View-Controller
architecture to store and provide parking guidance for users.

The WeMet project, developed in Fall 2012, provided an
add-on to a phone’s contact list. It enabled the recording of
the location where a contact was added to the contact list. The
Google Maps API was used to visualize the locations where
contacts were ‘met.’ Additionally, photos of the contacts
could be added, to better solve the problem of forgetting the
people who have been added to one’s contact list. Screen

shots of the WeMet project are presented with the software
architecture in Figure 3.

Figure 3. WeMet student project software architecture

with screen shots.

REFERENCES

[1] Baldwin, D. Discovery learning in computer science.
(1996) SIGCSE Bull. 28, 1, 222-226.

[2] Chamillard, A.T. and Braun, K. A.. 2002. The software
engineering capstone: structure and tradeoffs, (February
2002) SIGCSE Bull. 34, 1, 227-231.

[3] Nahapetian, A. Bridging Classroom Heterogeneity: A
Software Engineering Course and Projects, (2008)
Informatics Education Europe (IEE).

[4] Olagunju, A. O., The role of scientific discovery in
teaching and learning of computer science, (December
2000) SIGCSE Bull. 32, 4, 28-31.

[5] Paxton. J.T., A novel approach to teaching artificial
intelligence, (March 1995) SIGCSE Bull. 27, 1, 283-286.

[6] John A. Trono. 2008. A discovery-based capstone
experience, (April 2008) J. Comput. Sci. Coll. 23, 4,
195-200.

[7] van der Hoek, A., Kay, D.G., and Richardson, D.J.
Informatics: A Novel, Contextualized Approach to
Software Engineering Education, P. Inverardi and M.
Jazayeri (Eds), Software Engineering Education in the
Modern Age: Challenges and Possibilities,
PostProceedings of ICSE '05 Education and Training
Track, Lecture Notes in Computer Science 4309,
Springer, November 2006, pages 147–165.

